Cyanotic Congenital Heart Disease

May 19, 2006
Joe M. Moody, Jr, MD
Cardiology
UTHSCSA and STVHCS
Recommended References

• Perloff, JK. Clinical Recognition of Congenital Heart Disease. 5th ed. 2003.

• www.cachnet.org (Canadian Adult Congenital Heart Network)

• www.achd-library.com (The Nevil Thomas Adult Congenital Heart Library)
Outline

• Epidemiology and Pathophysiologic considerations

• Specific lesions
 – Tetralogy of Fallot
 – Transposition of the Great Arteries
 – Truncus Arteriosus
 – Tricuspid Atresia
 – Total Anomalous Pulmonary Venous Return
Abnormal Developmental Mechanisms

- Conus and great vessel development
- Intracardiac blood flow
 - Valve stenosis, atresia
 - ASD, VSD
- Cell death abnormality
- Extracellular matrix
- Abnormal targeted growth
- Abnormal situs and looping

Moss and Adams, 2001, p. 68

TABLE 5.3. PATHOGENETIC CLASSIFICATION OF SOME CONGENITAL CARDIOVASCULAR MALFORMATIONS BASED ON COMMON DEVELOPMENTAL MECHANISM RATHER THAN ANATOMIC DETECT

<table>
<thead>
<tr>
<th>Ectomesenchymal tissue migration abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conotruncal seption defects</td>
</tr>
<tr>
<td>Subarterial, type I ventricular septal defect</td>
</tr>
<tr>
<td>Double-outlet right ventricle</td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
</tr>
<tr>
<td>Pulmonary atresia with ventricular septal defect</td>
</tr>
<tr>
<td>Aortopulmonary window</td>
</tr>
<tr>
<td>Truncus arteriosus communis</td>
</tr>
<tr>
<td>Abnormal conotruncal cushion position</td>
</tr>
<tr>
<td>Transposition of the great arteries (-d)</td>
</tr>
<tr>
<td>Branchial arch defects</td>
</tr>
<tr>
<td>Interrupted aortic arch type B</td>
</tr>
<tr>
<td>Double aortic arch</td>
</tr>
<tr>
<td>Right aortic arch with mirror-image branching</td>
</tr>
<tr>
<td>Abnormal intracardiac blood flow</td>
</tr>
<tr>
<td>Perimembranous ventricular septal defect</td>
</tr>
<tr>
<td>Left heart defects</td>
</tr>
<tr>
<td>Bicuspid aortic valve</td>
</tr>
<tr>
<td>Aortic valve stenosis</td>
</tr>
<tr>
<td>Coarctation of the aorta</td>
</tr>
<tr>
<td>Interrupted aortic arch type A</td>
</tr>
<tr>
<td>Hypoplastic left heart, aortic atresia:mitral atresia</td>
</tr>
<tr>
<td>Right heart defects</td>
</tr>
<tr>
<td>Bicuspid pulmonary valve</td>
</tr>
<tr>
<td>Secundum atrial septal defect</td>
</tr>
<tr>
<td>Pulmonary valve stenosis</td>
</tr>
<tr>
<td>Pulmonary valve atresia with intact ventricular septum</td>
</tr>
<tr>
<td>Cell death abnormalities</td>
</tr>
<tr>
<td>Muscular ventricular septal defect</td>
</tr>
<tr>
<td>Ebstein's malformation of the tricuspid valve</td>
</tr>
<tr>
<td>Extracellular matrix abnormalities</td>
</tr>
<tr>
<td>Endocardial cushion defects</td>
</tr>
<tr>
<td>Ostium premium atrial septal defect</td>
</tr>
<tr>
<td>Type III, inflow ventricular septal defect</td>
</tr>
<tr>
<td>Atrioventricular septal defect</td>
</tr>
<tr>
<td>Dysplastic pulmonary or aortic valve</td>
</tr>
<tr>
<td>Abnormal targeted growth</td>
</tr>
<tr>
<td>Anomalous pulmonary venous return</td>
</tr>
<tr>
<td>Abnormal situs and looping</td>
</tr>
<tr>
<td>Heterotaxia, L-loop</td>
</tr>
</tbody>
</table>

?PDA
<table>
<thead>
<tr>
<th>Rank Order</th>
<th>Defect</th>
<th>Prevalence per 10,000 live births</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perimembranous</td>
<td>9.87</td>
</tr>
<tr>
<td>3</td>
<td>Muscular</td>
<td>4.7b</td>
</tr>
<tr>
<td>9</td>
<td>Atrial septal defect (isolated secundum type)</td>
<td>2.35 2.10</td>
</tr>
<tr>
<td>12</td>
<td>Laterality and looping including LTGA</td>
<td>1.44 3.10</td>
</tr>
<tr>
<td>11</td>
<td>Hypoplastic left heart syndrome</td>
<td>1.78</td>
</tr>
<tr>
<td>4</td>
<td>Pulmonary valve stenosis</td>
<td>3.78b</td>
</tr>
<tr>
<td>2</td>
<td>Pulmonary valve atresia, intact IVS</td>
<td>5.8</td>
</tr>
<tr>
<td>5</td>
<td>Tricuspid valve atresia, normal great vessels</td>
<td>3.6</td>
</tr>
<tr>
<td>8</td>
<td>Tetralogy of Fallot</td>
<td>2.60</td>
</tr>
<tr>
<td>6</td>
<td>AV septal defect</td>
<td>3.27</td>
</tr>
<tr>
<td>10</td>
<td>Trisomy 21</td>
<td>2.32</td>
</tr>
<tr>
<td>7</td>
<td>Transposition of the great arteries</td>
<td>2.64 T</td>
</tr>
<tr>
<td>30</td>
<td>Euploid</td>
<td>0.97</td>
</tr>
<tr>
<td>10</td>
<td>Total anomalous pulmonary venous return</td>
<td>0.66 T</td>
</tr>
<tr>
<td>13</td>
<td>Coarctation of the aorta</td>
<td>1.39</td>
</tr>
<tr>
<td>13</td>
<td>Ventricular septal defect</td>
<td>15.57</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8 4</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>8 2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>7 6</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6 1</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10 1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11 * 1.78a *</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4 7</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2 5 10</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>3 10</td>
</tr>
</tbody>
</table>
Epidemiology of Congenital Heart Disease

• More in males, esp. AS, coarctation, HLHS, pulm and tricuspid atresia, TGA
• Exceptions: PDA, ASD and Ebstein’s more in females
• 25% of infants with significant cardiac disease have extracardiac anomalies, often multiple, and 1/3 of these (cardiac and extracardiac combined) has an established syndrome

Braunwald 7th ed. Ch. 56. 2005;p.1490.
Five T’s

1. **Tetralogy of Fallot** (most common cyanotic lesion after 1 y.o.)
2. **Tricuspid Atresia**
3. **Transposition of the Great Arteries**
4. **Truncus Arteriosus**
5. **Total Anomalous Pulmonary Venous Return**

Two E’s

- Ebstein’s Anomaly
- Eisenmenger Syndrome

Truncus always has increased pulmonary blood flow, the other T’s usually have increased blood flow but can be decreased with high PVR, the two E’s have decreased pulmonary flow.

Ductal-Dependent Lesions

- D-TGA
- HLHS
Causes of Cyanotic Heart Disease

Perloff, 1994. p. 5 (not included in 2003 ed)

Truncus always has increased pulmonary blood flow, the other T’s usually have increased blood flow but can be decreased with high PVR, the two E’s have decreased pulmonary flow

<table>
<thead>
<tr>
<th>Causes of Cyanotic Heart Disease</th>
<th>Normal or Decreased Pulmonary Arterial Blood Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truncus arteriosus</td>
<td>1. Dominant left ventricle</td>
</tr>
<tr>
<td>Truncus always has increased</td>
<td>a. Tricuspid atresia</td>
</tr>
<tr>
<td>pulmonary blood flow, the other</td>
<td>b. Pulmonary atresia with intact ventricular</td>
</tr>
<tr>
<td>T’s usually have increased</td>
<td>septum</td>
</tr>
<tr>
<td>blood flow but can be decreased</td>
<td>c. Ebstein’s anomaly of the tricuspid valve</td>
</tr>
<tr>
<td>with high PVR, the two E’s</td>
<td>d. Single morphologic left ventricle with</td>
</tr>
<tr>
<td>have decreased pulmonary flow</td>
<td>pulmonary stenosis or high pulmonary</td>
</tr>
<tr>
<td></td>
<td>vascular resistance</td>
</tr>
<tr>
<td></td>
<td>2. Dominant right ventricle</td>
</tr>
<tr>
<td></td>
<td>a. No pulmonary hypertension</td>
</tr>
<tr>
<td></td>
<td>i. Pulmonary stenosis or atresia with</td>
</tr>
<tr>
<td></td>
<td>ventricular septal defect (Fallot’s tetralogy</td>
</tr>
<tr>
<td></td>
<td>ii. Pulmonary stenosis with intact ventricular</td>
</tr>
<tr>
<td></td>
<td>septum and right to left interatrial shunt</td>
</tr>
<tr>
<td></td>
<td>iii. Pulmonary stenosis with complete</td>
</tr>
<tr>
<td></td>
<td>transposition of the great arteries</td>
</tr>
<tr>
<td></td>
<td>iv. Double outlet right ventricle with</td>
</tr>
<tr>
<td></td>
<td>pulmonary stenosis</td>
</tr>
<tr>
<td></td>
<td>b. Pulmonary hypertension</td>
</tr>
<tr>
<td></td>
<td>i. Atrial septal defect with reversed shunt</td>
</tr>
<tr>
<td></td>
<td>ii. Ventricular septal defect with reversed</td>
</tr>
<tr>
<td></td>
<td>shunt</td>
</tr>
<tr>
<td></td>
<td>iii. Patent ductus arteriosus or aortopulmonary</td>
</tr>
<tr>
<td></td>
<td>window with reversed shunt</td>
</tr>
<tr>
<td></td>
<td>iv. Double outlet right ventricle with</td>
</tr>
<tr>
<td></td>
<td>high pulmonary vascular resistance</td>
</tr>
<tr>
<td></td>
<td>v. Complete transposition of the great arteries</td>
</tr>
<tr>
<td></td>
<td>vi. Total anomalous pulmonary venous connection</td>
</tr>
<tr>
<td></td>
<td>with high pulmonary vascular resistance</td>
</tr>
<tr>
<td></td>
<td>vii. Hypoplastic left heart (aortic atresia,</td>
</tr>
<tr>
<td></td>
<td>mitral atresia)</td>
</tr>
<tr>
<td></td>
<td>3. Normal or nearly normal ventricles</td>
</tr>
<tr>
<td></td>
<td>a. Pulmonary arteriovenous fistula</td>
</tr>
<tr>
<td></td>
<td>b. Vena caval to left atrial communication</td>
</tr>
</tbody>
</table>
Cyanosis

- Excess concentration of circulating reduced hemoglobin, over 3-4 gm/dl*
- Central cyanosis is characteristic of shunt, peripheral cyanosis ("acrocyanosis") indicates excessive extraction and peripheral constriction, a patient can show both*
- Hypoxemia stimulates renal oxygen sensors to increase erythropoietin, so hemoglobin concentration is increased
- Increased hemoglobin concentration compensates for low arterial oxygen saturation (increased oxygen delivery), thus it is adaptive

*Braunwald, 2001, p. 1513, 1617
Hyperviscosity Syndrome

• **Symptoms**: mainly CNS and usually stereotypic for an individual patient - headache, altered mentation, visual disturbances, tinnitus, paresthesias, fatigue, dizziness, and myalgias; relief by phlebotomy is defining

• Usually hematocrit is >65% with symptoms, may be less if iron deficient or dehydration (excessive heat, illness, fever, diarrhea, vomiting)

• Asymptomatic elevation in hematocrit is not an indication for phlebotomy (unless preoperative and hct >65 to decrease risk of perioperative hemorrhage, then could save for autologous transfusion)

• **Phlebotomy**: remove 250-500 ml over 30-45 minutes preceded by or simultaneous with quantitative NS (Dextran if CHF) replacement; iron supplementation; repeat QD till symptomatic improvement or Hb has “fallen too far”

Braunwald, 2005, p. 1496
Iron Deficiency

- Common and important in cyanosis, from hemoptysis, epistaxis, menses, inappropriate phlebotomy
- Microcytosis increases whole blood viscosity (less deformable than biconcave disc)
- Replace iron till hematocrit increases or till iron-replete state, IV iron for oral intolerance

Braunwald, 2001, p. 1617
Abnormality in Hemostasis

• Elevated PT and PTT, decreased levels of factors V, VII, VIII, and IX, qualitative and quantitative platelet disorders, increased fibrinolysis*

• Spontaneous superficial bleeding is usually self-limited; avoid ASA, NSAID and heparin

• Hemoptysis or intracranial or GI bleeding are concerns

• Anticoagulant usually should be avoided, but in atrial fibrillation or mechanical prosthesis, a risk-benefit dilemma must be addressed

Cerebrovascular Events

- Stroke from cerebral arterial *thrombosis* usually seen in patients with iron deficiency or iron depletion
- Cerebral *hemorrhage* with anticoagulant therapy
- Paradoxical *emboli* occur in R>L shunt, either thrombus or air from IV line without a filter
- Brain *abscess* may present with headache and fever and focal finding or seizure

Braunwald, 2005, p. 1496
Arthralgia

- **Hypertrophic osteoarthropathy** is usual cause – arthralgias and bone pain
 - Affects up to 1/3 patients with cyanotic congenital heart disease
 - Mechanism: megakaryocytes from marrow bypass lung and lodge in arterioles and capillaries and induce release of PDGF promoting local cell proliferation – new osseous formation with periostitis

- **Gouty arthritis** – treatable with colchicine, probenecid, antiinflammatory agents or allopurinol

Braunwald, 2005, p. 1496
Clubbing

- Characteristic of central cyanosis (cardiac or pulmonary disease with hypoxia, also can appear in infective endocarditis)
- Early – increased glossiness and cyanosis of skin at nail root
- Obliteration of the normal angle between nail base and skin, then hypertrophy of the pulp soft tissue, nail root floats freely, palpable loose proximal end of nail
- Increased number of capillaries, increased blood flow, extensive AV aneurysms and increase in connective tissue
- PDA and Eisenmenger physiology, clubbed toes, differential cyanosis
- PDA and TGA and Eisenmenger physiology, clubbed fingers, differential cyanosis

Normal versus Clubbing

Perloff, 1994, p. 7
1. Tetralogy of Fallot
Tetralogy of Fallot

- 1888 *la maladie bleue* – Etienne-Louis Arthur Fallot, diagnosed at bedside
- VSD + RVOTO + overriding aorta + RVH
- Cause: anterior deviation of septal insertion of the infundibular ventricular septum
Classic Tetralogy of Fallot

- RVH
- Overriding aorta
- RVOTO, infundibular, PV also usually involved
- VSD, usually perimembranous due to fibrous continuity with TV and AoV, lies subarterial

From Hurst, 1999, Ch 70
Tetralogy of Fallot, Associated Lesions

- Coronary artery anomaly, LAD from RCA and anterior course in 5%
- Right-sided Aortic arch in up to 25%, more if more cyanotic
- ASD in maybe 15% of patients (ASD=pentalogy of Fallot)
Tetralogy of Fallot

- Severity of manifestations generally related to extent of RVOTO
- Generally RVSP=LVSP
- Murmur is RVOTO, VSD is silent, S2 is single
- “Pink tet” has less RVOTO, spectrum of RVOTO extends to pulmonic valve atresia
- Exercise deepens cyanosis from decreased systemic vascular resistance – squat, spells (murmur softens during spell due to less PBF)
- Exam after complete repair: pulm regurg, single S2, residual PS murmur, possible residual VSD

Moss and Adams, p. 888
Tetralogy of Fallot Anatomy
Tetralogy of Fallot – Surgical Repair
Tetralogy of Fallot

Hypertrophied septoparietal trabeculations
Surgery for Tetralogy of Fallot

• Initial palliation now infrequently done, was to increase pulmonary blood flow (SA to PA)
 – Blalock-Taussig (first done 1945 on a patient with TOF); modified with Gore-Tex
 – May use with severe pulmonary artery hypoplasia (lack of flow results in lack of development) or aberrant coronary
 – Waterston and Potts are largely of historical interest – they had pulmonary artery distortion and inconsistent results of flow and pressure effects

• Complete repair: Relieve RVOTO, try not to destroy PV, maybe atrial approach; close VSD, close ASD if present
 – Significant aortopulmonary collateral artery flow or PDA may affect surgical decisions

Moss and Adams, p. 895
Aortopulmonary Shunts (SA to PA)

Table 9-1

<table>
<thead>
<tr>
<th>Aortopulmonary Shunts</th>
<th>Surgeon</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blalock-Taussig shunt</td>
<td>Alfred Blalock</td>
<td>1944</td>
</tr>
<tr>
<td>Potts shunt</td>
<td>Willis Potts</td>
<td>1946</td>
</tr>
<tr>
<td>Waterston shunt</td>
<td>David Waterston</td>
<td>1962</td>
</tr>
<tr>
<td>Cooley shunt</td>
<td>Denton Cooley</td>
<td>1966</td>
</tr>
<tr>
<td>Modified Blalock-Taussig shunt</td>
<td>Marc de Leval</td>
<td>1976</td>
</tr>
</tbody>
</table>

Cooley is similar to Waterston but intrapericardial anterior approach

Mavroudis, 2003, p. 161
<table>
<thead>
<tr>
<th>Arterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blalock-Taussig shunt (subclavian artery to PA)</td>
</tr>
<tr>
<td>Classic—end-to-side, no or reduced ipsilateral arm pulses</td>
</tr>
<tr>
<td>Current—side-to-side tubular grafts, preserved arm pulses</td>
</tr>
<tr>
<td>Central shunt (side-to-side tubular graft, aorta to PA)</td>
</tr>
<tr>
<td>Potts shunt (descending aorta to LPA)</td>
</tr>
<tr>
<td>Waterston shunt (ascending aorta to RPA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Venous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glenn shunt (SVC to ipsilateral PA without cardiac or other PA connection)</td>
</tr>
<tr>
<td>Bidirectional cavopulmonary (Glenn) shunt (end-to-side SVC to LPA and RPA shunt)</td>
</tr>
</tbody>
</table>

PA = pulmonary artery; LPA = left PA; RPA = right PA; SVC = superior vena cava.
Classic Blalock-Taussig

Tie off the right subclavian distally, so right arm has decreased blood flow and can have some long term sequelae

Mavroudis, 2003, p. 164
Modified Blalock-Taussig

Issue: selection of right size of graft diameter

A – anatomy of completed repair

B and C – technique of repair

D – taking down the repair

Mavroudis, 2003, p. 165
Potts Shunt

Mavroudis, 2003, p. 169
Waterston Shunt

Mavroudis, 2003, p. 167
2. Tricuspid Atresia
Tricuspid Atresia

- TV is represented by a dimple in the RA floor, muscular or fibrous membrane
- Obligate interatrial communication: PFO (usually restrictive) or secundum ASD, rarely primum ASD
- Obligate systemic to pulmonary communication, usually membranous VSD (if pulmonary atresia, PDA functions)
- Invariable secondary RV problems: RV inlet is absent, RV trabecular portion is incomplete, and infundibular portion remains – size of VSD is related to size of RV, and size of VSD also related to size of PV

Moss and Adams, 2001, p. 799
Tricuspid Atresia

All have complete admixture of venous returns

Cyanosis at least by 1 week

Functional single ventricle

Type III, uncommon, used for more complex great artery problems

Type I

TRICUSPID ATRESIA WITHOUT TRANSPOSITION

70-80%

Type II

TRICUSPID ATRESIA WITH TRANSPOSITION

12-25%

Perloff, 1994, p. 616, Moss and Adams, 2001, p. 800
Types of Tricuspid Atresia

Mavroudis 2003, p. 499
Tricuspid Atresia (univentricular connection of the LV type with absent right connection)

Wedge of (ST) sulcus tissue in the floor of the RA
No TGA, small VSD, small RV, narrow RVOT

TGA, large VSD (essentially a common ventricle), aorta arising from an infundibular component of the RV
Tricuspid Atresia Treatment

- Create connection from systemic vein to PA and eliminate atrial shunt
- At birth, diminished pulmonary blood flow is an indication for Pg E1 to keep ductus patent till surgery of aortopulmonary shunt
- If associated transposition and no pulm flow obstruction, may need pulmonary banding

Adams and Moss, 2001, p. 807
Systemic Vein to PA Anastomosis

- **Glenn**, 1965, SVC to distal RPA (residual R-L shunt from IVC)
- **Bidirectional Glenn** – SVC end-to-side to RPA, maintains PA continuity, largely has replaced original
- **Fontan** and **Baudet**, 1971, SVC to RPA and RA appendage to LPA and aortic homograft, and close ASD
- **Kreutzer**, RA to MPA with interposition of semilunar valve (PA branches maintain mutual continuity)
- **Fontan operation** now can refer to any operation that connects systemic vein and pulmonary artery without ventricular passage, may be done after a Glenn

Criteria Indicating Fontan Success

- Age 4-15 years (younger now)
- NSR
- Normal systemic venous connections (less now)
- Normal RA size
- Normal PA pressure (mean <15mmHg)
- Low PVR (<4 Woods units/m2)
- Adequate PA diameter (>75% Ao)
- **LVEF >60%
- **No MR
- No complicating factors (prior surgery, PA distortion)

Adams and Moss, 2001, p. 807

** current relative contraindications
Fontan Original Repair

Top: no TGA, insert valve in IVC, band the PA

Bottom: with TGA, insert valve in IVC and RPA, band the PA

Today, valves are avoided because they cause more problems

Mavroudis, 2003, p. 504
Fontan Modifications

Direct atriopulmonary connection (1) for tricuspid valve atresia (2); ventricular septal defect, oversewn (3); patch closure of atrial septal defect (4).

Extracardiac conduit made of a Dacron graft bypassing the right atrium, connecting the inferior vena cava to the inferior aspect of the right pulmonary artery. Superior vena cava is anastomosed to the superior aspect of the right pulmonary artery.
Fontan Operation

Anomalous pulm vein

A tunnel (gusset) from Gore-tex

Braunwald, 2001, p. 1564, 1607
Results of Fontan

• Unoperated tricuspid atresia has a 1-year mortality of 90%
• Surgical mortality is about 10%
• RA pressure = PA pressure
 – Pleural effusions
 – Low left heart filling if PVR is elevated
 – Protein-losing enteropathy is often the major morbidity
• Exercise capacity remains diminished, may be surprisingly good, considering single ventricle
• Transplantation is an option

Adams and Moss, 2001, p. 808
3. Transposition of the Great Arteries (d-TGA)
Transposition of the Great Arteries (d-TGA)

- Lethal and relatively frequent
- The conus (infundibulum) is usually subaortic, right-sided and anterior, preventing fibrous continuity between TV and AoV (but continuity between MV and PV)
- Extensive coronary variability, arise from “facing” coronary sinuses (67% usual, 16% LCX from RCA)
D-TGA Associations

- Nearly half the hearts have no associated anomaly except PFO or PDA
- Most frequent, VSD in 40-45%, small, large, or multiple, 33% membranous, 37% muscular, 30% malalignment (outlet)
- Malalignment VSD associates with overriding of PV onto RV, and if large begin to be DORV, with subpulmonic VSD (Taussig-Bing anomaly), may be associated with LVOTO
- LVOTO in about 25%, more if VSD present, may be dynamic from bulge of IVS into LVOT (subpulmonic)
D-TGA

A: with intact ventricular septum and ASD and bronchial arteries
B: with VSD and no PS

From Hurst, 1999, Ch 70
Transposition of the Great Arteries

Moss and Adams, 2001, p. 14
Physiology of d-TGA

- Pulmonic circuit to systemic circuit net flow is effective systemic flow
- Systemic circuit to pulmonic circuit net flow is effective pulmonic flow
- Neonate with intact ventricular septum and closing ductus, severe hypoxemia occurs
- With large shunting sites, saturation is better, depending on vascular resistances
- Bronchopulmonary collateral circulation may help, seen in over 30% of infants
Transposition of the Great Arteries

Note the parallel nature of the aorta and pulmonary artery.
Treatment of d-TGA

- Small VSD or none: cyanosis in first hour of life
- Large VSD: CHF in 2-6 weeks
- Large VSD and LVOTO: immediate cyanosis, similar to ToF
- Formerly, cath and percutaneous balloon septostomy (“Rashkind”, very brisk procedure)
- Current, echo and complete repair of neonate
Treatment of d-TGA

- Balloon atrial septostomy (Rashkind)
- Surgical creation of ASD (Blalock-Hanlon, needs no cardiopulmonary bypass) historical footnote
- PA banding if large VSD, formerly commonly performed
- SA-PA shunt if severe LVOTO
- Pg E1 to temporize a day or a few days
- Atrial switch, Arterial switch, VSD closure
- Rastelli procedure: LV to Ao through VSD, and RV to PA with valved conduit
Atrial Switch (Mustard/Senning)
Arterial Switch (Jatene)

LeCompte Maneuver - The aorta is brought under the bifurcation of the pulmonary artery, and the pulmonary artery and the aorta are anastomosed without necessitating graft interposition.
right upper panel shows complete obstruction of the inferior limb of the systemic venous baffle, whereas the lower right panel is the same case after stenting
Atrial Switch

- **Mustard** – atrial septum is resected, pericardial baffle used
- **Senning** – atrial septum is baffle, blood passes over small segment of external RA free wall

Braunwald, 2001, p. 1610
Mustard Operation

Mavroudis, 2003, p. 448
Mustard Operation

Moss and Adams, 2001, p. 1059
Senning Operation

Mavroudis, 2003, p. 449
Senning Operation

Moss and Adams, 2001, p. 1058
Arterial Switch (Jatene)
Arterial Switch (Jatene)

Mavroudis, 2003, p. 449
Arterial Switch (Jatene)

Mavroudis, 2003, p. 449
4. Truncus Arteriosus
Pathophysiology

- Definition: One truncal vessel gives rise to aortic, pulmonary and coronary circulations
- The infundibular truncal ridges fail to form
- Invariable VSD (incomplete distal pulmonary infundibulum development)
- Truncal valve – 1/3 are quadricuspid, regurg and stenosis in 10-15% each, coronary anomalies common
Types of Truncus Arteriosus

- Pulmonary flow: size of PA’s and PVR
- Corrective surgery needed in first few months of life

Perloff, 1994, p. 688; Braunwald, 2001, p. 1537
Truncus Arteriosus
Surgery for Truncus Arteriosus

- Close the VSD, connected to truncal vessel
- Excise PA’s from truncal vessel
- Valved conduit from RV to PA (likely will need replacement as child reaches 3-5 years)
- Address truncal valve abnormality – may be challenging
- Higher risk if severe truncal valve regurgitation, interrupted Aortic arch, coronary anomaly, or age >100 days
5. Total anomalous pulmonary venous return
Total Anomalous Pulmonary Venous Connection (Return)

• Cause: persistent communication of foregut plexus and cardinal or umbilicovitelline system of veins – so connection to systemic veins or RA
• Obligate ASD
• Coexistent in 30%: common atrium or atrial isomerism, single ventricle, truncus arteriosus, systemic venous anomaly
• Coexistent in 25-30%: GI, endo and GU anomalies

Braunwald, 2001, p. 1575
Total Anomalous Pulmonary Venous Connection

1. Above the heart
2. Into the heart
3. Below the heart (13%, more in males, obstruction and pulmonary edema)

Braunwald, 2001, p. 1575
TAPVR

Total anomalous pulmonary venous connection, three types:
A: to left brachiocephalic, B: to coronary sinus, C: below diaphragm
TAPVR Types

Supracardiac, in which the pulmonary veins drain either via the vertical vein to the anomalous vein (A) or directly to the superior vena cava (SVC) with the orifice close to the orifice of the azygos vein (B).

C, Drainage into the right atrium via the coronary sinus. **D**, Infracardiac drainage via a vertical vein into the portal vein or the inferior vena cava (IVC).
A. Subcostal view TAPVR to CS (PVC = confluence of PVs)
B. Suprasternal view TAPVR to L vertical vein
C. Subcostal view TAPVR infradiaphragm (flow is away from heart)
Total Anomalous Pulmonary Venous Connection

• Obstruction: pulmonary edema, systemic saturation below 70%, PA pressure more than systemic
• Unobstruction: milder cyanosis
• Management: Surgery generally in first month of life
 – Close ASD, connect anomalous veins to LA
 – Often very good result

Braunwald, 2001, p. 1576
6. Eisenmenger Physiology
Eisenmenger Physiology

• “Eisenmenger Syndrome” coined by Paul Wood: PVOD from large left to right shunt with PA pressure ~ systemic, bidirectional shunt
• From ASD, VSD, PDA, AVSD, Truncus, aortopulmonary window, univentricular heart
• Usually high PVR is established in infancy (<2 y.o.), even at birth
• Cyanosis progressive during teens and 20s
• Functional capacity decreases in 20s and after
• Survival 42% at age 25

Braunwald 2001, p. 1614
Eisenmenger Physiology

- Symptoms palpitations in 50% (atrial fibrillation/flutter 35%, VT 10%), hemoptysis 20%, PE, angina, syncope, endocarditis, CHF
- Eisenmenger PDA can have pink right nail beds and cyanosis of left hand
- Management: flu shots, iron replacement, antiarrhythmics, dig, diuretics, bedrest for hemoptysis
- Lung transplant and repair of defect, or heart-lung
- General anesthesia for noncardiac surgery is high-risk, try local; paradoxic emboli

Braunwald 2001, p. 1614
7. Complex Disease
Complex Congenital Heart Disease

- Left-right abnormalities
 - Situs inversus
 - Situs solitus
 - Combinations
 - Left isomerism (polysplenia)
 - Right isomerism (asplenia)
Double Outlet RV

A: with subaortic VSD and no PS
B: with subaortic VSD and subpulmonary stenosis
C: with subpulmonary, supracristal VSD (Taussig-Bing complex)

From Hurst, 1999, Ch 70
A subaortic ventricular septal defect below the crista supraventricularis favors delivery of left ventricular blood to the aorta.

Subpulmonary location of the ventricular septal defect above the crista favors streaming to the pulmonary trunk.
Double-inlet univentricular connection of LV type (DILV)
Hypoplastic Left Heart

Aortic hypoplasia, aortic valve atresia, and a hypoplastic mitral valve and left ventricle
Hypoplastic Left Heart Syndrome

Note the associated endocardial fibroelastosis
Types of LVOT Obstruction

1. Isolated fibromuscular obstruction
2. Bicuspid Aortic valve
3. Anterior MV leaflet chordal apparatus
4. Tunnel narrowing of valve, annulus and subvalve level
Common ventricle with dextro malposition and no PS

From Hurst, 1999, Ch 70
Approach to Echocardiography in Complex Congenital Heart Disease

- Segmental Analysis
- Systemic vein to atrium connection
- Pulmonary vein to atrium connection
- Location of RA, location of LA
- Atrioventricular connections
- Location of RV, location of LV
- Ventriculoarterial connection
Differentiation of Left and Right

- Left atrial appendage is narrower and longer than right
- TV is always with RV, and MV with LV
- TV connects to IVS apically from the MV
- RV has moderator band and heavier trabeculae than LV
- Ao V and MV fibrous continuity usually
<table>
<thead>
<tr>
<th>Native disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolated congenital aortic valve disease</td>
</tr>
<tr>
<td>Isolated congenital mitral valve disease (except parachute valve, cleft leaflet)</td>
</tr>
<tr>
<td>Isolated patent foramen ovale or small atrial septal defect</td>
</tr>
<tr>
<td>Isolated small ventricular septal defect (no associated lesions)</td>
</tr>
<tr>
<td>Mild pulmonic stenosis</td>
</tr>
<tr>
<td>Repaired conditions</td>
</tr>
<tr>
<td>Previously ligated or occluded ductus arteriosus</td>
</tr>
<tr>
<td>Repaired secundum or sinus venosus atrial septal defect without residua</td>
</tr>
<tr>
<td>Repaired ventricular septal defect without residua</td>
</tr>
</tbody>
</table>

*These patients can usually be cared for in the general medical community.

Copyright © 2005 by Elsevier Inc.
<table>
<thead>
<tr>
<th>TABLE 56–2</th>
<th>Types of Adult Patients with Congenital Heart Disease of Moderate Severity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aorto–left ventricular fistulas</td>
<td></td>
</tr>
<tr>
<td>Anomalous pulmonary venous drainage, partial or total</td>
<td></td>
</tr>
<tr>
<td>Atrioventricular septal defects (partial or complete)</td>
<td></td>
</tr>
<tr>
<td>Coarctation of the aorta</td>
<td></td>
</tr>
<tr>
<td>Ebstein anomaly</td>
<td></td>
</tr>
<tr>
<td>Infundibular right ventricular outflow obstruction of significance</td>
<td></td>
</tr>
<tr>
<td>Ostium primum atrial septal defect</td>
<td></td>
</tr>
<tr>
<td>Patent ductus arteriosus (not closed)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary valve regurgitation (moderate to severe)</td>
<td></td>
</tr>
<tr>
<td>Pulmonic valve stenosis (moderate to severe)</td>
<td></td>
</tr>
<tr>
<td>Sinus of Valsalva fistula/aneurysm</td>
<td></td>
</tr>
<tr>
<td>Sinus venosus atrial septal defect</td>
<td></td>
</tr>
<tr>
<td>Subvalvular or supravalvular aortic stenosis (except HOCM)</td>
<td></td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td></td>
</tr>
</tbody>
</table>

| Ventricular septal defect with |
| Absent valve or valves |
| Aortic regurgitation |
| Coarctation of the aorta |
| Mitral disease |
| Right ventricular outflow tract obstruction |
| Straddling tricuspid/mitral valve |
| Subaortic stenosis |

HOCM = hypertrophic obstructive cardiomyopathy.

*These patients should be seen periodically at regional adult congenital heart disease centers.

Copyright © 2005 by Elsevier Inc.
<table>
<thead>
<tr>
<th>TABLE 56–3</th>
<th>Types of Adult Patients with Congenital Heart Disease of Great Complexity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduits, valved or nonvalved</td>
<td></td>
</tr>
<tr>
<td>Cyanotic congenital heart (all forms)</td>
<td></td>
</tr>
<tr>
<td>Double-outlet ventricle</td>
<td></td>
</tr>
<tr>
<td>Eisenmenger syndrome</td>
<td></td>
</tr>
<tr>
<td>Fontan procedure</td>
<td></td>
</tr>
<tr>
<td>Mitral atresia</td>
<td></td>
</tr>
<tr>
<td>Single ventricle (also called double inlet or outlet, common or primitive)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary atresia (all forms)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary vascular obstructive diseases</td>
<td></td>
</tr>
<tr>
<td>Transposition of the great arteries</td>
<td></td>
</tr>
<tr>
<td>Tricuspid atresia</td>
<td></td>
</tr>
<tr>
<td>Truncus arteriosus/hemitruncus</td>
<td></td>
</tr>
<tr>
<td>Other abnormalities of atrioventricular or ventriculoarterial connection not included above (i.e., crisscross heart, isomerism, heterotaxy syndromes, ventricular inversion)</td>
<td></td>
</tr>
</tbody>
</table>

*These patients should be seen regularly at adult congenital heart disease centers.

Copyright © 2005 by Elsevier Inc.
<table>
<thead>
<tr>
<th>Table 56-4</th>
<th>Cardiac Defects Causing Central Cyanosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transposition of the great arteries</td>
<td>Ebstein’s anomaly</td>
</tr>
<tr>
<td>Tetralogy of Fallot</td>
<td>Eisenmenger physiology</td>
</tr>
<tr>
<td>Tricuspid atresia</td>
<td>Critical pulmonary stenosis or atresia</td>
</tr>
<tr>
<td>Truncus arteriosus</td>
<td>Functionally single ventricle</td>
</tr>
<tr>
<td>Total anomalous pulmonary venous return</td>
<td></td>
</tr>
</tbody>
</table>

Note 5 Ts and 2 Es.

Copyright © 2005 by Elsevier Inc.
The End
Spectrum of Ventriculo-arterial Abnormality

Mavroudis, 2003, p. 412
Topics in Congenital Heart Disease

• Genetic abnormalities causing cardiovascular disease

• Pathology, pathophysiology, recognition, and treatment

• Congenital heart disease in adults
5 Basic Questions In Congenital Heart Disease

- Is the patient acyanotic or cyanotic?
- Is pulmonary arterial blood flow increased or not?
- Does the malformation originate in the left or right side of the heart?
- Which is the dominant ventricle?
- Is pulmonary hypertension present or not?

Perloff, 1994, p. 7
Genetic Abnormalities

• Many genes are being identified that affect laterality
Congenital Heart Disease Classification - 1

- Intracardiac systemic-pulmonary communications (acyanotic)
- Extracardiac systemic-pulmonary communications (acyanotic)
- Left heart valve/vessel malformations
- Right heart valve/vessel malformations
- Pulmonary venous connection
Congenital Heart Disease Classification - 2

- Cardiac malpositions
- Coronary malformations
Fetal Circulation near term

Numbers represent percent of combined ventricular output

FLOW

From Hurst, 1999, Ch 70
Fetal Circulation near term

Numbers represent oxygen saturation

SATURATION

From Hurst, 1999, Ch 70
Fetal Circulation near term

Numbers represent cardiovascular pressures

PRESSURE

From Hurst, 1999, Ch 70
CW Doppler,
VSD

From Hurst, 1999, Ch 70
LV angiogram
LAO projection
VSD

From Hurst, 1999, Ch 70
ASD types

A: secundum
B: sinus venosus
C: large secundum
D: primum, partial AV canal
ASD at fossa ovalis (secundum)

From Hurst, 1999
Ch 70
CXR in ASD with large L to R shunt and no pulm htn, 4 y.o.

From Hurst, 1999, Ch 70
Sinus venosus ASD and its repair
Partial common AV canal
cleft anterior MV leaflet
normal TV leaflet
Complete Common AV Canal

From Hurst, 1999, Ch 70
Common AV canal defect with ASD and VSD

From Hurst, 1999, Ch 70
Surgery for common AV canal
pericardial patch

From Hurst, 1999, Ch 70
Patent ductus arteriosus

From Hurst, 1999
Ch 70
From Hurst, 1999, Ch 70
PDA flow in PW Doppler in Pulm Artery
Sinus of Valsalva fistula: A = posterior sinus to RA; B = right sinus to RV

From Hurst, 1999, Ch 70
MRI of Coarctation of Aorta

From Hurst, 1999, Ch 70
Repair of Coarctation at Surgery

From Hurst, 1999, Ch 70
Congenital Valvular AS in an 8 y.o. boy

From Hurst, 1999, Ch 70
Valvular deformity types in Congenital Valvular Aortic Stenosis

From Hurst, 1999, Ch 70
Valvular Pulmonic Stenosis

From Hurst, 1999, Ch 70
Ebstein’s Anomaly: Arrowheads indicate attachments of TV to IV septum and RV apex

From Hurst, 1999, Ch 70
From Hurst, 1999, Ch 70 Repair of Ebstein’s Anomaly

Atrial septal defect closed with patch

Anterior leaflet

Coronary sinus

Patch

Atrioventricular node

Superior vena cava

Anterior leaflet

Inferior vena cava

Aorta
Congenitally Corrected Transposition of the Great Arteries

From Hurst, 1999, Ch 70
Modified Fontan Operation

upper SVC to RPA
baffle IVC to SVC
lower SVC to RPA

From Hurst, 1999, Ch 70
Anomalous Coronary Artery Communications

A: RCA to CS
B: RCA to RA
C: RCA to RV
D: 2 coronary arteries communicate with accessory vessel from PA

From Hurst, 1999, Ch 70
Anomalous Left main coronary From PA

From Hurst, 1999, Ch 70
Coronary Embryology

AO – aorta
PA – pulmonary artery
3a-d – coronary buds from semilunar sinuses
Ca – RCA rudiment
Cb – LCX rudiment
Cc – LAD rudiment
Sn – sinusoids

Angelini P. Am Heart J 1989;117:418
Coronary Ostial Origin Variants

Percentage of variations in coronary ostial sites, with the vertical scale being in cm above (or below) the upper edge of sinus of Valsalva.

Angelini P. Am Heart J 1989;117:418
Coronary Ostial Origin Variants

Variations in coronary ostial orientation

A – common, coronary is nearly orthogonal to aortic wall in both vertical and horizontal axes

B – less frequent, nearly tangential

C – unusual, intussusception of coronary artery, proximal segment is embedded in aortic wall

Angelini P. Am Heart J 1989;117:418
Variants in Origin and Course

I – posterior

II – retroaortic

III – intertruncal

IV – intramuscular (within crista supraventricularis and ventricular septum)

V – anterior (within pulmonary infundibulum)

a: anterior interventricular sulcus

b: obtuse cardiac margin
c: acute cardiac margin
d: posterior interventricular sulcus

Angelini P. Am Heart J 1989;117:418
Situs Types by Subcostal Echo

- **SOLITUS**
 - IVC
 - AO

- **INVERSUS**
 - AO
 - IVC

- **HETEROTAXY**
 - AO
 - AZY

- **HETEROTAXY**
 - IVC
 - AO

Copyright © 2005 by Elsevier Inc.
Fetal Circulation
Types of ASD

- Superior sinus venosus defect
- Oval fossa defect
- Inferior sinus venosus defect
- Coronary sinus defect
- Confines of true atrial septum
- Atrioventricular septal defect ("ostium primum")
Secundum ASD (subcostal RAO view)
Secundum ASD and Amplatzer Closure
Other Interatrial Communications

1. Coronary sinus defect due to unroofing

2. Superior sinus venosus defect

3. Inferior sinus venosus defect

4. Atrioventricular septal defect
Complete Atrioventricular Septal Defect

RA, LA, RV, LV
Congenitally Corrected Transposition (L-TGA)
Congenitally Corrected Transposition (L-TGA)

dysplasia and displacement of the morphological left-sided tricuspid valve
Ebstein anomaly
significant displacement of the septal tricuspid valve leaflet (asterisk), with associated valve dysplasia
Coarctation of the Aorta

Site of the posterior shelf, as outlined by the arrow

Coarctation of the aorta, before and after stenting
Double Aortic Arch

The right image is from an aberrant left subclavian artery as seen by spiral CT.
Supravalvular Aortic Stenosis

“Elfin facies”
Peripheral Pulmonic Stenosis

poststenotic dilation of the peripheral pulmonic arteries
Pulmonary Valve Stenosis

a. Thickened pulmonary valve and obstruction due to commissural fusion

b. Post-stenotic dilation

c. Balloon dilation
Pulmonary Vein Stenosis

Three-dimensional MRI demonstrating stenosis of the left lower lobe pulmonary vein