Basic Hemodynamics

July 19, 2006
Joe M. Moody, Jr, MD
UTHSCSA and STVHCS
Outline

• The Cardiac Cycle
• Types of Measures
 – Pressure
 – Flow (Calculated from Temperature, O₂ Saturation, Indicator Concentration, Electromagnetic Flow Velocity or Image Measures)
 – Calculated Measures
 – Image Measures
 • Volume, Distance, Area
 • Flow (volume change by cine frame)
• Normal values
The Cardiac Cycle
The Cardiac Cycle 1. Electromechanical delay, Q-M1

- Ventricular force is assisting atrial relaxation in decelerating transmitral blood velocity below 0.
- S1 normally occurs in the middle of the QRS complex, and MR begins then.

Begins with onset of Q wave of ECG, ends with S1, about 0.05 sec
Prolonged in mitral stenosis, reported prolongation in systemic hypertension, WPW, MR, VSD, PDA, Ebstein’s
The Cardiac Cycle

1. Electromechanical delay, Q-M1
2. Isovolumic contraction time

- Ventricular force is raising pressure to aortic diastolic pressure
- Aortic ejection sound or onset of aortic flow occurs immediately after the QRS

Begins with S1, ends with aortic ejection sound, about 0.05 sec
Shortened in increased contractility, increased EDV or SV (AR)
Prolonged in decreased contractility or CO, acute HTN, LBBB
The Cardiac Cycle

1. Electromechanical Delay, Q-M1
2. Isovolumetric Contraction time
3. Ejection

- Ventricular force results in fiber shortening and less pressure rise.
- An early pressure gradient between the LV and Ao causes rapid acceleration of blood through the aortic valve.
- The later secondary pressure rise is called a tidal wave and is due to aortic wave reflection primarily from the renal artery level.
- If the reflection comes late (late afterload), relaxation would be accelerated.
- At the end of systole, there is brief aortic flow reversal to close the aortic valve.

Begins with aortic ejection sound, ends with S2, normal about 0.28 sec
Shortened in HF, MR, and increased contractility (thyrotoxicosis)
Prolonged in AS, HCM, but not necessarily AR or PDA
Left Ventricular Ejection

Murgo, JP. J Am Coll Cardiol 1998;32:1596
Left Ventricular Ejection

Murgo, JP. J Am Coll Cardiol 1998;32:1596
The Cardiac Cycle

1. Electromechanical delay, Q-M1
2. Isovolumic contraction time
3. Ejection, systolic ejection period
4. Isovolumic relaxation time

Begins with S2, ends with MV opening, normal about 0.08 sec
Shortened in elevated LV filling pressures, mitral stenosis
Prolonged in impaired relaxation
The Cardiac Cycle

1. Electromechanical delay, Q-M1
2. Isovolumic contraction time
3. Ejection, systolic ejection period
4. Isovolumic relaxation time

- Related to
 - Height of LV pressure at dicrotic notch
 - Rate of pressure decline
 - Height of LA pressure at mitral crossover

- Normally a monoexponential decay, characterized by time constant of relaxation (τ), analyzed from peak $\frac{dP}{dt}$ to 5 mmHg above LVEDP, normal value of τ is 25-40 msec

- Relaxation is considered 97% complete by $3\times \tau$ or about 140 msec after A2

Begins with S2, ends with MV opening, normal about 0.08 sec
Shortened in elevated LVEDP, MS, Prolonged in impaired relaxation
The Cardiac Cycle

1. Electromechanical delay, Q-M1
2. Isovolumic contraction time
3. Ejection, systolic ejection period
4. Isovolumic relaxation time
5. Rapid filling

- Related to
 - Left atrial pressure
 - LV relaxation rate
 - Net LV-LA compliance
 - LV end-systolic volume
 - MV resistance

• Gradient reverses

Begins with mitral opening, ends with S3, normal about 0.10 sec
Pressure and Flow

High fidelity LA and LV pressures and Transmital Doppler

Closed chest canine

Courtois M et al.
Circulation 1988;78:661
The Cardiac Cycle

1. Electromechanical delay, Q-M1
2. Isovolumic contraction time
3. Ejection, systolic ejection period
4. Isovolumic relaxation time
5. Rapid filling
6. Diastasis

Begins with S3, ends with onset of atrial pressure rise, normal duration quite variable. Represents a form of “heart rate reserve”
The Cardiac Cycle

1. Electromechanical delay, Q-M1
2. Isovolumic contraction time
3. Ejection, systolic ejection period
4. Isovolumic relaxation time
5. Rapid filling
6. Diastasis
7. Atrial kick

- Related to
 - Atrial systolic function
 - Atrial volume
 - Atrial contractility
 - Atrial rhythm
 - Ventricular compliance
 - Ventricular pressure

Begins with onset of pressure rise, ends with onset of QRS
The Cardiac Cycle

1. Electromechanical delay, Q-M1
2. Isovolumic contraction time
3. Ejection, systolic ejection period
4. Isovolumic relaxation time
5. Rapid filling
6. Diastasis
7. Atrial kick
The Cardiac Cycle and Auscultatory Events

Right-sided events similar
Assessing Pressure Tracings

1. Start with the ECG, note rhythm, rate and QRS width
2. Note the scales for pressure (note if there are 2 simultaneous pressures) and time (paper speed)
3. Identify the waveforms and obtain standard pressure measurements
4. Note respiratory effects
5. Reflect on the clinical significance of these
6. Observe the pressure waveforms for additional morphologic data and reflect on their clinical significance
7. Integrate all the information into the clinical context and reflect on patient management implications
Basic Hemodynamics

- Flow
 - Return to the heart
 - Flow out of the heart
- Pressure
- Pressure/Flow = Resistance
Lower left, a low central venous pressure (CVP) can be associated with a high cardiac output and normal volume and return function or with normal cardiac function but volume and decreased return function. Lower right, a high CVP can be associated with normal return function but decreased cardiac function or normal cardiac function with high return function because of excess volume. Thus, a single value of CVP does not indicate volume status or cardiac function.

Figure 1. Interaction of the return function and cardiac function for the determination of right atrial pressure and cardiac output
Venous Pressure

Effects of gravity on arterial and venous pressure. The scale on the right indicates the increment (or decrement) in mean pressure in a large artery at each level. The mean pressure in all large arteries is approximately 100 mm Hg when they are at the level of the left ventricle. The scale on the left indicates the increment in venous pressure at each level due to gravity. The manometers on the left of the figure indicate the height to which a column of blood in a tube would rise if connected to an ankle vein (A), the femoral vein (B), or the right atrium (C), with the subject in the standing position. The approximate pressures in these locations in the recumbent position—i.e., when the ankle, thigh, and right atrium are at the same level—are A, 10 mm Hg; B, 7.5 mm Hg; and C, 4.8 mm Hg.
Pressure and Volume

![Graph showing the pressure-volume loop with annotations for Ejection, Isovolumic Relaxation, Filling, Isovolumic Contraction, End Systole, and End Diastole.]

Fig. 1. A: the 4 phases of the cardiac cycle are readily displayed on the pressure-volume loop, which is constructed by plotting instantaneous pressure vs. volume. This loop repeats with each cardiac cycle and shows how the heart transitions from its end-diastolic state to the end-systolic state and back. B: with a constant contractile state and afterload resistance, a progressive reduction in ventricular filling pressure causes the loops to shift toward lower volumes at both end systole and end diastole. When the resulting end-systolic pressure-volume points are connected, a reasonably linear end-systolic pressure-volume relationship (ESPVR) is obtained. The linear ESPVR is characterized by a slope (Ees) and a volume axis intercept (V0). In contrast, the diastolic pressure-volume points define a nonlinear end-diastolic pressure-volume relationship (EDPVR). C: when afterload resistance is increased at a constant preload pressure, the loops get narrower and longer and, under idealized conditions, the end-systolic pressure-volume points fall on the same ESPVR as obtained with preload reduction.
Normal Values at BAMC

<table>
<thead>
<tr>
<th>Location</th>
<th>Nml</th>
<th>Max</th>
<th>Resp Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA, a</td>
<td>9</td>
<td>?12</td>
<td>2</td>
</tr>
<tr>
<td>RA, v</td>
<td>6</td>
<td>?12</td>
<td>2</td>
</tr>
<tr>
<td>RA, X nadir</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RA mean</td>
<td>6</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>LA, a</td>
<td>10</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>LA, v</td>
<td>12</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td>LA mean</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>RV systolic</td>
<td>27</td>
<td>35</td>
<td>2-3</td>
</tr>
<tr>
<td>RV EVD</td>
<td>5</td>
<td>7</td>
<td>1-2</td>
</tr>
<tr>
<td>LV systolic</td>
<td>120</td>
<td>135</td>
<td>4-8</td>
</tr>
<tr>
<td>LV EVD</td>
<td>10</td>
<td>12</td>
<td>3-4</td>
</tr>
<tr>
<td>PA systolic</td>
<td>22</td>
<td>30</td>
<td>3-4</td>
</tr>
<tr>
<td>PA diastolic</td>
<td>12</td>
<td>15</td>
<td>3-4</td>
</tr>
<tr>
<td>PA mean</td>
<td>15-17</td>
<td>18 (20)</td>
<td>4-5</td>
</tr>
</tbody>
</table>
Normal Hemodynamic Values

<table>
<thead>
<tr>
<th></th>
<th>Pressure</th>
<th>Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA mean</td>
<td>0-5</td>
<td>65-80</td>
</tr>
<tr>
<td>RV Systolic</td>
<td>10-25</td>
<td></td>
</tr>
<tr>
<td>PA Systolic</td>
<td>10-25</td>
<td></td>
</tr>
<tr>
<td>PA mean</td>
<td>5-15</td>
<td></td>
</tr>
<tr>
<td>LA mean</td>
<td>0-10</td>
<td>95-100</td>
</tr>
<tr>
<td>LV systolic</td>
<td>85-150</td>
<td></td>
</tr>
<tr>
<td>LV end-diastolic</td>
<td>0-10</td>
<td></td>
</tr>
<tr>
<td>Ao systolic</td>
<td>85-150</td>
<td></td>
</tr>
<tr>
<td>Ao diastolic</td>
<td>60-90</td>
<td></td>
</tr>
<tr>
<td>Ao mean</td>
<td>70-100</td>
<td></td>
</tr>
</tbody>
</table>

Criley and Ross, 1971
Normal RA Pressure Waveform

Criley JM and Ross RS, Tampa Tracings, 1971
Right Heart Pressures With Goodale-Lubin

Grossman, 5th ed, p.90
Normal Right Heart Waveforms

Criley JM and Ross RS, Tampa Tracings, 1971
Normal RA and RV Pressure Relationship

Notes:

RV pressure not normal (COPD).

RV waveform underdamped (white and black arrows)

RA c wave inapparent.

a wave 7
v wave 7
mean 6
nadir Y descent 4

Kern, 1999, p. 102
Swan-Ganz Pressures Detail
Swan-Ganz Pressures Detail

ACLS Textbook 12-19, 1994
Right heart pressures via Swan-Ganz catheter
Right heart pressures via Swan-Ganz catheter
Dysrhythmia and RA pressure

Kern, MJ, 1999, p. 103

66 year-old man after MI
Normal LA Pressure Waveform

Criley JM and Ross RS, Tampa Tracings, 1971
Normal Left Ventricular – Left Atrial Relationship
Normal Left Heart Waveforms
Physical Principles in Pressure Measurement

- Harmonic information in waveforms
- Catheter-transducer system
 - Sensitivity
 - Frequency response
 - Damping
- Waveform reflection
Fourier analysis breaks down any repeating waveform into a series of sine and cosine waves, identifying the harmonic information.

Fourier analysis breaks down any repeating waveform into a series of sine and cosine waves, identifying the harmonic information.

For faithful reproduction of a waveform by Fourier analysis, a system with a response of at least 10 harmonics are needed. For a heart rate of 60, that means 10 Hertz, and for a heart rate of 120, that means a response of 20 Hertz. Some say that 20 harmonics are needed, meaning a response of 40 Hertz is needed for a tachycardic patient.

Frequency Response of System

- System = catheter and transducer
- Fluid-filled systems are plagued by problems with frequency response
 - A system has a natural resonant frequency
 - Damping, especially underdamping
 - Delay in pulse transmission through fluid column
Pressure Measurement System

Response to Different Frequencies

Grossman, 1996, p. 128
Pressure Measurement System

Technique of assessing frequency response with “Pop test”

Grossman, 1996, p. 131
Pressure Measurement System
Analyzing frequency response

Grossman, 1996, p. 131
Pressure Measurement System
Analyzing frequency response

Underdamped Nearly Optimally Damped Overdamped
Progressively more damped tracings by introducing iodinated contrast into the catheter

Grossman, 1996, p. 131
X2/x1 is percent overshoot
D is damping coefficient
N is undamped natural frequency
ND is damped natural frequency
Time lines are 20 msec

Grossman, 1996, p. 131
Pressure Measurement System
Assessing frequency response

In example B, \(t = 40 \text{ msec} \), \(N_D = 1/t = 25 \text{ cycles/second} \)

\[D = \sqrt{\ln^2(x_2/x_1)/\left[\pi^2 + \ln^2(x_2/x_1)\right]} = 0.603 \]

\[N = N_D / \sqrt{1-D^2} = 31.3 \text{ cycles/second} \]

In example A, \(t = 40 \text{ msec} \), \(N_D = 25 \text{ Hz} \), \(D = 0.25 \), \(N = 25.8 \text{ Hz} \)

\(X_2/X_1 \) is percent overshoot
\(D \) is damping coefficient
\(N \) is undamped natural frequency
\(N_D \) is damped natural frequency

Grossman, 1996, p. 131
Example of Underdampered system
4F Right Judkins

X2 = 29.5
X1 = 47.5
D = 0.15
T = 0.048
ND = 21
N = 21
Example of Underdamped System
4F Right Judkins

25mm/sec paper speed
Example of Underdamped System
4F Right Judkins

100mm/sec paper speed
Air in catheter
Comparison of Pressure Measurement Systems

A = micromanometer, B = fluid-filled system

Grossman, 1996, p. 139
Normal Left and Right Heart Pressure Waveforms

Murgo, 1975, Circulation Supplement 46
Normal Left and Right Heart Pressure Waveforms

Note: 1. Different scales for Right versus Left heart pressures. 2. Impulse Gradient for right and left heart. 3. “Hangout” interval for right and left heart. 4. Relative duration of ventricular systole. 5. Aortic wave reflection.

Murgo, 1975, Circulation Supplement 46
Impulse Gradient, Rest and Exercise

Murgo, 1975, Circulation Supplement 46
Resting RV and PA gradient

Murgo, 1975, Circulation Supplement 46
Valsalva Effect on Aortic Pressure Waveform

Valsalva Release

Murgo JP et al. Circulation
Reflected Wave

\[P_{\text{forward}} + P_{\text{backward}} = P_{\text{measured}} \]

\[F_{\text{forward}} + F_{\text{backward}} = F_{\text{measured}} \]

Wave Reflection in Valsalva

Aortic Reflection

Healthy 30 year-old man: onset of pressure is aligned artificially

Factors Influencing Reflected Wave Size

Increase
- Vasoconstriction
- Heart failure
- Hypertension
- Aortic or ileofemoral obstruction
- Post-Valsalva release

Decrease
- Vasodilation
 - Physiologic (fever)
 - Pharmacologic (NTG, NTP)
- Hypovolemia
- Hypotension
- Valsalva strain phase

Grossman, 1996, p. 136
Normal Hemodynamic Values

- Cardiac index 2.8-4.2
- Stroke volume 30-65
- A-V O2 Difference, mL/L blood 30-48
- Brachial 90-140/60-90, mean 70-105
- LVED 5-12
- LA or PAW 5-12
- PA 15-28/5-16, mean 10-22
- RVED 0-8
- RA 0-8
- LV volume index (mL/m2) ED 50-90, ES 15-25
- SVR 900-1400
- PAR 45-120

Hurst, 10th ed, p.66
Techniques for Measuring Flow During Catheterization in Man

- Fick
- Thermodilution
- Angiography
- Indicator dilution
- Electromagnetic flow probe
Blood Flow: Cardiac Output

• Purpose: deliver oxygen and nutrients to body tissues and remove carbon dioxide and wastes
 – Extraction of oxygen by metabolizing tissues
 – Extraction creates an arteriovenous difference

• Adequacy depends on cardiac output relative to metabolic need
 – Extraction has reserve
Blood Flow: Cardiac Output

From Grossman, 1996, p. 160
• Note:
this calculation REQUIRES STEADY STATE!
• The volume of flow is directly related to the amount of substance removed or added to the flowing material, and inversely related to the resultant content difference in the flowing material.

\[C.O. = \frac{O_2 \text{ consumption}}{A-V \ O_2 \text{ difference}} \]
Fick Principle

\[C.O. = \frac{O_2 \text{ consumption}}{A-V O_2 \text{ difference}} \]

- O₂ consumption
 - measured by expired air analysis using
 - Waters’ hood or
 - Douglas bag, or merely
 - Usually 110-150 ml O₂/min/m²
 - assumed to be 3.0 ml O₂/kg/min (0.86 MET)
Fick Principle

\[C.O. = \frac{O_2 \text{ consumption}}{A-V \, O_2 \, \text{ difference}} \]

- **A-V \(O_2 \)** difference
 - Arterial minus mixed venous (mixed in RA and RV, so measured in PA)
 - Difference in \(O_2 \) content, not merely saturation
- **A-V \(O_2 \)** difference = \((LVSat - PAsat) \times 10 \times 1.36 \times (Hb)\)
- Using mere mixed venous saturation in the proper context is a good quick substitute for cardiac output and has advantages
Fick Cardiac Output

- Errors: not steady state, error in expired air sample, error in respiration quotient, error in saturation measurement, error in collecting mixed venous sample
- More accurate at lower cardiac outputs
- Assuming oxygen consumption can introduce a 10% error, or even up to 25%
Thermodilution Cardiac Output

- An indicator dilution technique where the indicator is negative heat

Thermodilution Cardiac Output

- Errors with tricuspid regurgitation, with low-flow states with heat loss into surrounding structures
- Accuracy 5-10%

Dye Dilution Cardiac Output

- Indocyanine green dye is classic indicator
- Inject into PA, sample in brachial artery
- Changes in dilution curve shape can detect abnormal circulation
- Early recirculation shows left to right shunt
- Early shoulder shows right to left shunt

Dye Dilution Curves

From Criley and Ross, 1971, pp 43-47.
Calculations from Catheterization Data

- Resistance is by “Ohm’s Law”
- \(E = I \times R \)
- Pressure = Output \times Resistance
- Resistance = Pressure / Output
Right and Left Heart Ejection Dynamics

Murgo, 1975, Circulation Supplement 46
LV Ejection Profile

Murgo, 1975, Circulation Supplement 46
Normal LV Ejection Dynamics

Murgo, 1975, Circulation Supplement 46
Pulmonary Hypertension

Murgo, 1975, Circulation Supplement 46
RV and PA Gradients
Rest and Exercise

Murgo, 1975, Circulation Supplement 46
Valsalva Release Effects on Aortic Pressure

Technique of V Wave Measurement

- PCW pressure versus direct LA pressure
 - Delay 0.06 sec (Hurst, 10th ed, p.485)
 - Delay 50-70 msec (Grossman, 5th ed, p.156)
 - Delay 70 +/- 15 msec (Grossman, p.90, Lange, JACC ’89, 8F Goodale-Lubin, expect longer delay and more damping with smaller softer catheters)
 - Delay 140-200 msec (Kern, p.95)
 - Alignment is by placing peak of V wave just to left of (just before) the crossing of LV pressure
 - Y descent slope is less steep
 - LA pressure is overestimated by about 1.7 mmHg.
Assessing the LA V Wave

- V wave peak of twice mean pressure may be seen without significant MR
- V wave peak of three times mean pressure almost certainly indicates severe MR
- Normal V wave doesn’t exclude severe MR at all
- LV failure from any cause can give large V wave (distended LA becomes relatively noncompliant)
- High pulmonary blood flow can give large V wave (acute VSD) even >50mmHg
Hypothetical LA Diastolic P/V Curves

Tice, AJC, Jan 1995,
Simultaneous LA-PCW Pressures

Grossman, 5th ed, p.91
Normal PCW Pressure

Kern, 1999, p. 95
Comparison of LA and PCW

Kern, 1999, p. 95
Simultaneous LA and PCW. Patient with MV Commisurotomy and MR and Progressive fatigue

Kern, 1999, p. 99
Note higher LA systolic and earlier occurrence and similar mean pressures, and slower PCW Y descent.

Kern, 1999, p. 99
Simultaneous LA and LV. Same Patient with MV Commisurotomy and MR and Progressive fatigue. Is there MS?

Kern, 1999, p. 99
Arrows denote erroneous gradient if PCW used.

Kern, 1999, p. 99
Comparison of RA and LA V waves